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We present analysis of the interacting quantum wire problem in the presence of magnetic field and spin-
orbital interaction. We show that an interesting interplay of Zeeman and spin-orbit terms, facilitated by the
electron-electron interaction, results in the spin-density wave �SDW� state when the magnetic-field and spin-
orbit axes are orthogonal. We show that this instability is enhanced in a closely related problem of Heisenberg
spin chain with asymmetric uniform Dzyaloshinskii-Moriya �DM� interaction. Magnetic field in the direction
perpendicular to the DM anisotropy axis results in staggered long-range magnetic order along the orthogonal
to the applied field direction. We explore consequences of the uniform DM interaction for the electron-spin-
resonance �ESR� measurements, and point out that they provide way to probe right- and left-moving excita-
tions of the spin chain separately.
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I. INTRODUCTION

Over the last several years there has been a remarkable
growth in research activity in the field of spintronics with the
ultimate goal to fabricate novel spin-filter devices which can
control and manipulate the electron spins.1 The proposals for
such a spin-filter device contains two achievable attributes, a
ballistic quantum wire and the presence of a tunable Rashba
spin-orbit coupling responsible for controlling the electron
spin. Ballistic quantum wires are created in a two-
dimensional electron gas �2DEG� by cleaved edge over
growth, whereas the Rashba effect arises due to the asymme-
try associated with the confinement potential.2 The asymme-
try and hence the Rashba coupling strength can be controlled
by applying the gate voltage. Although the role of spin-
orbital and magnetic �Zeeman� fields in the electric and spin
transport is well understood for a noninteracting quantum
wire,3–7 the case of interacting electrons remains the subject
of active research.8–16

It should be noted that finite spin-orbit coupling is very
natural, and strictly speaking, unavoidable, in semiconduct-
ing quantum wires due to pronounced structural asymmetry
inherent in the fabrication process. Also, in addition to the
noted asymmetry of confining potentials �which include
quantum-well potential that confines electrons to a two-
dimensional �2D� layer as well as transverse �in-plane� po-
tential that forms the one-dimensional channel3�, spin-orbit
interaction is inherent to semiconductors of either zinc-
blende or wurtzite lattice structures lacking inversion
symmetry.17

Another very interesting system that motivates our inves-
tigation is provided by one-dimensional electron surface
states on vicinal surface of gold18 as well as by electron
states of self-assembled gold chains on stepped Si�111� sur-
face of silicon.19 In both of the systems, one-dimensional
ballistic channels appear due to atomic reconstruction of sur-
face layer of atoms, see also Refs. 20 and 21. The resultant
surface electronic states lie within the band gap of bulk
states, and thus, to high accuracy, are decoupled from elec-
trons in the bulk. Spin-orbit interaction is unexpectedly
strong in these systems, with the spin-orbit energy splitting

of the order of 100 meV. In fact, spin-split subbands of
Rashba type have been observed in angular resolved photo-
emission spectroscopy �ARPES� in both two-dimensional22

and one-dimensional settings.18,19 The very fact that the two
�horizontally� spin-split parabolas are observed in ARPES
speaks for high quality and periodicity of the obtained sur-
face channels.

As we show below, the most interesting situation involves
electrons subjected to both spin-orbital and magnetic fields.
While it is perhaps impractical to think of ARPES measure-
ments in the presence of magnetic field, it is quite possible to
imagine experiments on magnetic metal surfaces.23,24 It is
then natural to investigate combined effect of noncommuting
spin-orbit and Zeeman interactions, together with electron-
electron interaction, on the one-dimensional system of elec-
trons.

Electrons in a quantum wire �or, in a one-dimensional
surface channel� are a good realization for a Tomonaga-
Luttinger liquid and serve as an ideal system for the study of
the interplay of magnetic field and Rashba spin-orbit effect
on the interacting quantum wire. The magnetic field breaks
the time-reversal symmetry of the Hamiltonian and splits the
band of free electrons into two, corresponding to up-spin and
down-spin electrons, reducing spin-rotational symmetry of
the system from SU�2� to U�1�. Subsequent inclusion of the
Rashba term, HR��� �p� · ẑ, see Eq. �2�, breaks this U�1�
symmetry �observe that ��z ,HR��0�. In addition, the spin-
orbit interaction �SOI� HR breaks spatial inversion symmetry
P :x→−x. A consequence of the fully broken SU�2� symme-
try is the generation of new scattering processes which are no
longer spin conserving. These are the Cooper scattering pro-
cesses in which a pair of electrons in the lower band scatter
to the upper band and vice versa.25 A relevant Cooper term
creates a gap in the energy spectrum leading to a long-range
spin-density wave order. We find that the gap strength is
proportional to the backscattering �2kF component� of the
electron-electron interaction potential and the ratio of the
Rashba to the Zeeman energy. For a large enough gap the
ordering in the spin-density wave can crucially suppress the
backscattering process of electrons from an isolated impurity.
Brief description of our main results was previously given in
Ref. 25.
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We will also analyze an alternate system, a Mott-Hubbard
Heisenberg spin-1/2 chain, in the presence of magnetic field
and Dzyloshinskii-Moriya �DM� interaction. A magnetic
field applied at an angle perpendicular to the DM anisotropy
axis breaks the continuous U�1� symmetry and consequently
a true long-range order can develop in the spin chain.
The case of a staggered DM term has been studied
experimentally26 and theoretically,27 and has been shown to
open up a gap in the spectrum with the gap scaling as B2/3

with the magnetic field B. The case of a uniform DM term is
also experimentally relevant, see for example Ref. 28, but
has not been discussed much theoretically. We will show that
the case of a uniform DM term and perpendicular magnetic
field can be described analogously to the quantum wire in the
presence of spin-orbit interaction and magnetic field.

The outline for the paper is as follows: In Sec. II we will
review noninteracting electrons in the presence of magnetic
field and Rashba spin-orbit term. We then consider interac-
tion effects by using standard bosonization approach. In Sec.
III B we will perform renormalization-group analysis to de-
termine relevant and irrelevant terms. In Sec. IV we use per-
turbative approach to generate relevant terms. The role of
relevant terms on the transport property of electrons in the
presence of a single impurity is analyzed in Sec. V. In Sec.
VI, we consider a spin-1/2 Heisenberg antiferromagnetic
chain in the presence of magnetic field and uniform DM term
and compare this system with the quantum wire. Comparison
with the case of a staggered DM term is considered in Sec.
VI D. In Sec. VII we discuss the role ESR measurements can
play in unraveling the DM term in the spin chain. Technical
details of our calculations are described in Appendices.

II. ONE-DIMENSIONAL ELECTRONS IN THE PRESENCE
OF MAGNETIC FIELD AND RASHBA SPIN ORBIT

TERM

The Hamiltonian for an electron subject to the Rashba
spin-orbit term and in the presence of magnetic field is given
by

H0 =
�2�px

2 + py
2�

2m
+ V�x� − g�B

��

2
· B� + HR, �1�

HR =
�R

�
��xpy − �ypx� , �2�

where �R is the Rashba spin-obrit coupling, g is the effective
Bohr magneton, B is the magnetic field, �� ��=x ,y ,z� are
the Pauli matrices and the potential V�x�=m�2x2 /2 typically
confines the particle in the x direction. When the confining
potential is strong enough so that the width of the wire
�� / �2m�� is much smaller than the electron Fermi wave-
length, only the first subband is occupied and the Hamil-
tonian �1� acquires a one-dimensional form

H0 �
�2k2

2m
+
�R

�
��xk� − g�B

��

2
· B� . �3�

Here and below k is electron’s momentum along the axis of
the wire, which we will denote as x axis in the following for
notational convenience. We also set �=1.

It is easy to see that in the absence of magnetic-field SOI
in Eq. �3� can be easily gauged away via the spin-dependent
shift of the momentum, H0�B=0�� �k+m�R�x�2. Corrections
arising from the omitted term �R�ypx, Eq. �2�, produce small
spin-dependent variations of the velocities of right- and left-
moving particles.10 These, however, are not important for our
purposes for as long as �RkF�EF, which is the limit �along
with 	Z�EF� considered in this work. With interactions in-
cluded, electrons form Luttinger liquid with somewhat modi-
fied critical exponents, in comparison with the standard case
of no SOI.10,11

Most interesting situation arises when both SOI and Zee-
man terms are present simultaneously and do not commute
with each other as happens when spin-orbital axis ��x in �3��
is different from the magnetic-field direction. In what fol-
lows we choose magnetic field to point along the z direction,

B� =Bẑ. The energy eigenvalues of the Hamiltonian �3� is
found as5,6


� =
k2

2m
����Rk�2 + �	z

2
�2

, �4�

and the momentum dependent eigenspinors are, for 
+�k�:

	�+�k�
 � � sin
�k�

2

cos
�k�

2
 , �5�

and for 
−�k�:

	�−�k�
 � � cos
�k�

2

− sin
�k�

2
 , �6�

where 	z=g�BB and rotation angle �k� is introduced

�k� = arctan
2�Rk

	z
. �7�

Notice that particles with momentum �k experience an ef-

fective magnetic field B� eff= �2�Rk / �g�B�x̂+Bẑ, thus spin
directions in each band vary with the momentum. Going
from left to the right side of the band, the spins “rotate”
along the counter-clockwise direction. At k=0, the effective
magnetic field is just the applied field, thus the separation
between the two bands is minimum and the spins align ac-
cording to the applied field, i.e., along the �z direction. For
states with the same energy the spin states of + and − bands
are no longer orthogonal if there is a finite magnetic field and
Rashba spin-orbit coupling. In particular the right and left
Fermi levels satisfy the following property

k−
R/L + k+

R/L � � 2kF �8�

and

�kF = 	k−
R/L − k+

R/L	 �
m

kF

��2kF�R�2 + �	z�2. �9�

The magnitude of velocities at the Fermi level are
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	u�	 � vF �
�	z�2

2kF
�4��RkF�2 + �	z�2

, �10�

where vF=kF /m. The spin overlap between the upper �+� and
lower �−� band is nonzero,

���k+
R/L�	��k−

R/L�
 = sin
�k+

R/L� − �k−
R/L�

2
. �11�

As will be discussed in Sec. III, the nonorthogonality of the
spin states acquires important consequences when one turns
on the electron-electron interactions.

III. INTERSUBBAND INTERACTION EFFECTS

The interaction part in terms of the particle-field operators
���x� and ��

†�x� �� and �� are the spin indices� is given by

Hint =
1

2
� dxdx�U�x − x����

†�x����
† �x������x�����x� ,

�12�

where the summation on pairs of identical spin indices is
assumed and U�x−x�� is the screened �by surrounding gates�
interaction between the electrons. The field ���x� is conven-
tionally defined in terms of the annihilation operator a��k� of
a free particle in the state eikx and with spin �= ↑ ,↓: ���x�
=� dk

2�eikxa��k�. Alternatively, annihilation operators a��k� of
particles, which are the eigenstates of the Hamiltonian �1�
with eigenenergies 
��k�, can be used to represent the field
operator as follows:

���x� = �
�=�

� dk

2�
eikx����k�	�
a��k� . �13�

The low-energy physics of the interacting wire is described
by linearizing the spectrum near the Fermi points, �k�. The
�= ↑ ,↓ field operators are now described, in coordinate
space, in terms of the chiral right �R�� and left �L�� movers of
�=� subbands as follows

���x� = �
�=�

����k��	�
eik�xR� + ����− k��	�
e−ik�xL�.

�14�

Following,29 we decompose the interaction part of Hamil-
tonian �12� into intrasubband Hintra and intersubband Hinter
scattering processes. The intrasubband process, Hintra, de-
scribes the interaction between electrons in the same sub-
band and involves the standard forward and backscattering
processes, see Appendix A. The second scattering mecha-
nism, Hinter, involves scattering between electrons in differ-
ent subbands and can be conveniently divided into forward,
backward, and Cooper scattering processes. Below we will
discuss the intersubband scattering processes in more detail.
The forward-scattering process involves interaction between
q�0 components of the densities in the two subbands

Hinter
F =

1

2
U�0�� dx �

�=�
�R�

†R� + L�
†L�� � �R−�

† R−� + L−�
† L−�� .

�15�

The intersubband backscattering process is classified into di-
rect and exchange scattering. Direct backscattering process
involves q�2k� components of the densities in the two sub-
bands: a left �right� moving electron in the subband � �−��
changes its direction to become a right �left� moving one
while remaining in the same band,

Hinter
d−B = cos��k+��cos��k−��U�k+ + k−�

� �
�=�

� dxei2�k�−k−��x�R�
†L���L−�

† R−�� . �16�

This contribution involves an oscillatory factor exp�i2�k�

−k−��x� in the integral due to the nonconservation of momen-
tum during the scattering.

The other backscattering process is via a momentum-
conserving exchange mechanism, where electrons again scat-
ter by large-momentum transfer and in the process exchange
their bands. The scattering channel conserves momentum
and reads

Hinter
ex−B =

1

2 �
�=�

�U�k� − k−��sin2��k�� − �k−��
2

�
�� dx��R�

†R−���R−�
† R�� + �L�

†L−���L−�
† L���

+ 2U�k� + k−��sin2��k�� + �k−��
2

�
�� dx�R�

†L−���L−�
† R��� . �17�

Note the appearance of �squared� wave-function overlap fac-
tors, ����k�� 	���k−��
, which signify the exchange nature of
the scattering. Note also that these factors are nonzero due to
a finite Rasbha coupling �R, which allows electrons to scatter
without conserving their spins.

The Cooper scattering process, which is central to our
story, involves scattering of a pair of opposite movers �right
and left� in the subband � into a similar pair in the other, −�,
subband. Each pair has zero total momentum which remains
conserved in this scattering. Being pair-tunneling-like, Coo-
per scattering requires nonconservation of spin. It represents,
for example, a scattering of a pair of two �almost� down-spin
electrons into a pair of two �almost� up-spin ones. The Coo-
per scattering reads

Hinter
C =� dx�U�k− − k+�sin2��k−� − �k+�

2
�

− U�k− + k+�sin2��k−� + �k+�
2

��
��R−

†L−
†R+L+ + h.c.� . �18�

The first term �direct Cooper scattering� is due to electrons in
the band R� and L� jumping into R−� and L−�, respectively.
The coefficient for this term is �U��kF�sin2��−−+� /2�,
where �kF= 	k�−k−�	 is the momentum transfer for an elec-
tron and sin2��−−+� /2� is the squared overlap integral.
�For brevity, we denote �k��=� here and in the follow-
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ing.� The second process �exchange� with electron scattering
from R� and L� to L−� and R−�, respectively, involves a co-
efficient, �U�k�+k−��sin2��−++� /2�, with a larger,
sin2��−++� /2�, overlap integral. The bigger overlap for
this second �R�↔L−�� process is also rather clear from pic-
torial representation of spin orientation in different subbands,
as shown in Fig. 1. For the case of short-ranged �screened�
interaction potential a simple estimate, using Eqs. �8� and
�9�,

U�k− − k+�sin2� −−+

2 �
U�k− + k+�sin2� −++

2 � �
U��kF�
U�2kF�� 	z

2EF
�2

� 1 �19�

shows that the second, exchange Cooper process, dominates.
This defines the regime to be considered in this work.

Finally we take into account two classes of momentum
nonconserving scattering processes where one of them ex-
hibits mixed features of Cooper and back-scattering �called
as asymmetric back-scattering process� while the other one
has features reminiscent of Cooper and forward-scattering
processes �asymmetric forward-scattering process�. A typical
asymmetric back �forward� scattering event involves total
momentum change ��kF, see Fig. 2. For example, right and
left moving fermions in the same subband scatter into left
�right� and right �left� moving fermions, respectively, with
one of the fermions now in a different subband. Alterna-
tively, the oppositely moving fermions may be in different
subbands to begin with but end up in the same subband with
opposite �same� momentums. The scattering process acquires
a slowly �compared to direct back scattering �Eq. �16��� os-
cillating factor exp�i�k�−k−��x� owing to the nonconserva-
tion of momentum and is given by

Hasymm = sin�+ + −

2
��
�=�

sgn���U�2kF�cos���

�� dx�ei�k�−k−��x�R�
†L�

†R�L−� − R−�
† L�

†R�L�� + h.c.� .

�20�

The above expression reflects contributions from only the
asymmetric back-scattering processes. The asymmetric
forward-scattering processes involve identical fermion op-
erators as in Eq. �20�. However, the ratio of amplitudes for
asymmetric forward to asymmetric back-scattering process is
small,

U��kF�sin� �−−�

2 �
U�2kF�sin� �+−�

2 �cos �

�
U��kF�
U�2kF�

�	z
2 + 4��RkF�2

2EF
� 1,

which allows us to neglect contributions from asymmetric
forward-scattering processes altogether.

The electron density in the quantum wire is assumed to be
incommensurate with the lattice spacing, hence the Umklapp
scattering process is not considered. To summarize, the inter-
action part of the Hamiltonian has been decomposed in terms
of three broadly defined scattering processes, intrasubband,
intersubband, and asymmetric scattering process,

H = Hintra + Hinter + HAsymm. �21�

A. Bosonization

Bosonization is performed by expressing the fermionic
operators in the Hamiltonian via the chiral bosonic �R/L�

fields.30–32 The fermionic fields in terms of the chiral bosonic
field are as follows

R� =
��

�2�a0

ei�4��R�, L� =
��

�2�a0

e−i�4��L�, �22�

where a0�kF
−1 is the short-distance cutoff and �� are the

Klein factors which are introduced to ensure the correct an-
ticommutation relations for the fermionic operators from dif-
ferent ��� subbands. The bosonic operators obey the follow-
ing commutation relations:

��R�,�L��� =
i

4
����; where �,�� = � �23�

��R/L��x�,�R/L���y�� = �
i

4
���� sign�x − y� , �24�

the first of which, Eq. �23�, ensures anticommutation be-
tween right and left movers from the same subband, while
the second is needed for the anticommutation between like
species �i.e., right with right, left with left�. Klein factors
anticommute

���,���� = 2����, ��
† = ��. �25�

In the following we choose the gauge where �+�−= i. The
chiral �R/L� are expressed in terms of �� and its dual �� as
follows

FIG. 1. �Color online� Occupied subbands 
� of Eq. �4�. Arrows
illustrate spin polarization in different subbands. Dashed �dotted�
lines indicate exchange �direct� Cooper scattering processes.

FIG. 2. �Color online� Asymmetric back-scattering
processes.
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�R� =
�� − ��

2
; �L� =

�� + ��

2
, �26�

The bosonized form of the Hamiltonian is obtained by mak-
ing use of Eqs. �22�–�26�, as well as the following results for
�chiral� densities

R�
†R� =

�x�R�

��
=

�x��� − ���
�4�

,

L�
†L� =

�x�L�

��
=

�x��� + ���
�4�

. �27�

The �bosonized� Hamiltonian in terms of �� and �� is the
sum of intrasubband, intersubband scattering and asymmetric
scattering processes,

H = Hintra + Hinter + Hasymm, �28�

where the intrasubband part has the usual form �see Appen-
dix A�

Hintra =
1

2 �
�=�

� dx�vF��x���2

+ �vF +
U�0� − cos2��k���U�2k��

�
���x���2� .

�29�

The intersubband part of the Hamiltonian, Hinter, is given by

Hinter = Hinter
F + Hinter

d−B + Hinter
ex−B + Hinter

C , �30�

where

Hinter
F =

U�0�
�
� dx�x�+�x�−,

Hinter
d−B =

U�2kF�cos2�F�
2��a0�2 � dx cos�2����− − �+�

+ 2�k+ − k−�x� ,

Hinter
ex−B = −

U�2kF�
2�

sin2�F�� dx��x�+�x�− − �x�+�x�−� ,

Hinter
C =

U�2kF�sin2�F�
2��a0�2 � dx cos�2����− − �+�� . �31�

The asymmetric part has the following bosonized form,

Hasymm = −
�2U�2kF�sin�2F�

�2��3/2a0
� dx��x��R− − �R+�

� sin��4���L− − �L+� − �kFx� + �x��L− − �L+�

� sin��4���R− − �R+� − �kFx�� . �32�

In deriving Eqs. �31� and �32� we took limits 	z�EF
=vFkF and �RkF�EF which allowed us to neglect velocity
differences �Eq. �10�� in the two subbands and approximate
U�2k��, U�

3k�−k−�

2 ��U�2kF� and �k����kF��F. An im-

portant exception to this replacement is provided by Hinter
d−B

and Hasymm in Eqs. �31� and �32�, respectively, where mo-
mentum mismatch factors 2�k−−k+�x=2�kFx and �k−−k+�x
=�kFx must be preserved. It is worth noting here that the
approximations assumed do not restrict the ratio
2�RkF / �g�BB�=Es−o /	z, which can still take on any value.

A more standard representation of the Hamiltonian is in
terms of the symmetric ��, �� �charge� and antisymmetric
��, �� �spin� modes. These combinations are defined as fol-
lows

�� =
�− + �+

�2
, �� =

�− − �+

�2
,

�� =
�− + �+

�2
, �� =

�− − �+

�2
. �33�

The Hamiltonian now reads

H = H� + H�. �34�

The charge part of the Hamiltonian is harmonic

H� =
1

2
� dx�u�K���x���2 +

u�

K�

��x���2� . �35�

The spin part is the sum of quadratic and nonlinear terms,
H�=H�

0 +H�
C+H�

B+H�
A, where

H�
0 =

1

2
� dx�u�K���x���2 +

u�

K�

��x���2� �36�

H�
C =

U�2kF�sin2�F�
2��a0�2 � dx cos��8���� �37�

H�
B =

U�2kF�cos2�F�
2��a0�2 � dx cos��8��� + 2�kFx� �38�

H�
A = Hasymm = i�+�−

U�2kF�sin�2F�
�2��3/2a0

� dx��x��� − ���sin��2���� + ��� − �kFx�

+ �x��� + ���sin��2���� − ��� − �kFx�� . �39�

For completeness, it is worth noting that the leading correc-
tion to these equations is represented by the intermode term

H�−�� =
�u+ − u−�

2
� dx��x���x�� + �x���x��� , �40�

which couples spin and charge sectors. Its small amplitude
�u+−u−��	z /EF, see Eq. �10�, justifies its neglect in the fol-
lowing.

Competing nature of interacting problem is clear from the
presence of two nonlinear terms, Eqs. �37� and �38�, involv-
ing noncommuting �dual� boson fields �� and ��, in the
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Hamiltonian. Similar situation happens in models of organic
conductors, where spin-nonconserving spin-orbit and dipole-
dipole interactions play an important role.33

The Luttinger liquid parameters, K�/�, and charge/spin ve-
locities u�/� are found by adding contributions from har-
monic Hamiltonians �29� and Hinter

F and Hinter
ex−B from Eq. �31�,

with the result

u� � vF�1 +
2U�0� − U�2kF�cos2�F�

2�vF
� ,

u� � vF�1 −
U�2kF�cos2�F�

2�vF
� ,

K� � 1 −
2U�0� − U�2kF�

2�vF
� 1,

K� � 1 +
U�2kF�cos�2F�

2�vF
. �41�

These expressions are perturbative in small parameters
U�0� /vF and U�2kF� /vF. Note also that physically reason-
able interactions are characterized by U�2kF��U�0�, where
the equality sign is obtained in the limit of fully screened,
delta-function-like contact interaction between electrons.

Noting that F varies from 0 to � /2 as the ratio Es−o /	z
varies from 0 to �,

F = arctan
2�RkF

	z
→ � 0 for Es−o �	z

�/2 for Es−o �	z
� , �42�

we observe that spin stiffness K� in Eq. �41� varies from its
standard value slightly above 1, K��F→0�=1
+U�2kF� / �2�vF�, to the value below 1, K��F→� /2�=1
−U�2kF� / �2�vF�. This unusual behavior, consequences of
which are discussed below, is rooted in the spin-orbit-broken
spin-rotational invariance of the problem, as discussed in
Sec. I.

B. Renormalization group analysis

The fate of the three nonlinear terms, Cooper �Eq. �37��,
backscattering �Eq. �38��, and asymmetric �Eq. �39��, are de-
termined by renormalization-group �RG� analysis. The
analysis is significantly simplified by expressing the Hamil-
tonian in terms of current operators. To this end, we write the

Hamiltonian in terms of the right and left spin �J�R ,J�L� and
charge �JR

c ,JL
c� currents, which obey Kac-Moody algebra.30

The uniform part of the currents is expressed in terms of the
chiral right and left moving fermions: the charge currents are

JR
c = �

�=�
R�

†R�, JL
c = �

�=�
L�

†L�, �43�

and the spin currents are

J�R = �
���=�

R�
†
�� ���

2
R��, J�L = �

���=�

L�
†
�� ���

2
L��. �44�

As an example, the z component of the right moving spin
current is defined as JR

z = �R−
†R−−R+

†R+� /2. Note that in the

asymptotic limit of �RkF /	Z→0 the �−,+� bands correspond
to �↑ ,↓� spin bands and we recover the canonical definition
for the spin current.

Since the charge part of the Hamiltonian is quadratic, Eq.
�35�, and is decoupled from the spin part, it suffices to con-
sider the RG flow of the spin part only, H�=H�

0 +H�
C+H�

B

+H�
A. In terms of current operators it reads:

H�
0 = 2�u�� dx��JR

z JR
z + JL

z JL
z � − y�JR

z JL
z � ,

H�
A = �u�y�

A� dx�e−i�kFx�JR
z JL

− − JR
+JL

z � + h.c.� ,

H�
B = �u�y�

B� dx�e−i2�kFxJR
−JL

+ + h.c.� ,

H�
C = �u�y�

C� dx�JR
−JL

− + h.c.� . �45�

The initial values ��=0� of the interaction parameters are

y��0� = 2�K� − 1� = U�2kF�cos�2F�/�vF,

y�
C�0� = U�2kF�sin2�F�/�u�,

y�
B�0� = − U�2kF�cos2�F�/�u�,

y�
A�0� = U�2kF�sin�2F�/�u�. �46�

Note that to first order in U�2kF� there is no difference be-
tween vF and u� in denominators of the above expressions.

It is convenient to start with formal but useful limit of
�kF=0, where H� can be compactly written in terms of spin
currents

H���kF = 0� = 2�u�� dx��JR
z JR

z + JL
z JL

z �

+ �
a=x,y,z

yaJR
aJR

a + yA�JR
z JL

x − JR
x JL

z �� . �47�

Here yx=y�
B+y�

C, yy =y�
B−y�

C, yz=−y�, and yA=y�
A. The RG

equations for the dimensionless couplings ya=x,y,z,A are easy
to derive with the help of operator product expansion �OPE�
technique,

dyx

d�
= yyyz,

dyy

d�
= yzyx + yA

2 ,

dyz

d�
= yyyx,
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dyA

d�
= yyyA. �48�

Despite complicated appearance, the solution of this system
of equations is easy. One finds that yx���=yz���, yA���=
−sin�2F�yy���, and yx���=cos�2F�yy���. As a result, the
system is reduced to a single equation dyy /d�=yy

2, solution
of which is standard: yy���=yy�0� / �1−yy�0���→−1 /� for
�→�.

Thus, in the absence of momentum mismatch �kF be-
tween the two subbands, all perturbations in Eq. �47� are
marginally irrelevant and logarithmically decay to zero. This
simply reflects rotational SU�2� symmetry of the problem in
the absence of spin-orbit and Zeeman fields.

The full problem, with �kF�0, is solved by neglecting all
momentum nonconserving terms in H�: being marginal in
the �kF=0 limit, such terms become infinitely irrelevant for
�kF�0. More carefully, we can follow full RG �Eq. �48��
until �z=ln�1 / �a0�kF��=ln�kF /�kF� is reached—beyond this
scale oscillating terms average to zero. The end result is that
we are allowed to disregard H�

A,B terms in Eq. �45�. RG equa-
tions for remaining couplings can be obtained from Eq. �48�
by nullifying all but two, y� and y�

C�yC, couplings. This
leads to the standard system of two KT equations �see, for
example, Refs. 30 and 31�.

dy�

d�
= yC

2 ,
dyC

d�
= y�yC. �49�

Note that initial values of these couplings are given by cor-
responding solutions of Eq. �48� evaluated at �=�z.

Solution of this system is determined by the integral of
motion �2=yC

2 −y�
2 and the ratio of the initial couplings

y��0� /yC�0�=−cos���. In terms of these parameters it reads30

y���� = − � cot��� + ��, yC��� = �/sin��� + �� .

�50�

There are three different regimes, illustrated in Fig. 3.
�I� strong coupling: 1 /�3�sin�F��0. Here �=−im,

with m�0, and �=�+ i�, with ��0. In this regime both
coupling flow to strong coupling, reaching pole singularity at
�0=� /m.

�II� cross-over regime: 1�sin�F��1 /�3. Here ��0
and 0����. The flow is still to strong coupling, but via an
intermediate �cross-over� region �for 0���� /2� where
yC��� initially decreases. Eventually both y�,C reach strong
coupling, at �0= ��−�� /�.

�III� weak coupling: This obtains when �= im, m�0, and
�= i�, with ��0. In this situation y�→−m as �→�, while
yC→0. This is critical �Luttinger liquid� phase of the spin
sector. It is, however, not realized in our problem as the
requirement −y��0��yC�0��0 is equivalent to sin�F��1
which is clearly not possible.

The conclusion is then that Cooper phase is realized for
arbitrary value of � /2�F�0, i.e., for arbitrary ratio of SO
to Zeeman energies, tan�F�=2�RkF /	z. This finding of the
Cooper phase, which has the meaning of the spin-orbit sta-
bilized spin-density-wave �SDWx� phase �see Sec. IV�, con-
stitutes the main result of our work. We have previously
discussed the limit of small F, which is physically most
transparent, in Ref. 25.

C. The nature of the Cooper ordering

We now consider the physical meaning of the Cooper
instability. For simplicity we focus on the regime I of Sec. II.
Being relevant, the Cooper term �37� grows in magnitude
and reaches strong-coupling limit when yC��c��1 while
K�→2.30 A positive value of gC results in �� field being
pinned to one of the semiclassical minima ��

cl= �m+ 1
2 ��� /2

�m�Z�. The energy cost of �massive� fluctuations ��� near
these minima represents spin gap which can be estimated as

	c �
vF

�
= vF�F

2U�2kF�
�vF

�K�/2�K�−1�

. �51�

Here �=a0e�c is the correlation length, �
���vF / �U�2kF�F

2��K�/�2�K�−1��. Physical meaning of these
minima follows from the analysis of spin correlations.

We start with spin density Sa=�s
†�s,s�

a �s� /2, which is de-
fined with respect to the standard spin basis, s= ↑ ,↓. We
focus on “2kF“ components of spin, where quotation marks
are used to remind that large-momentum components of spin
density include contributions from both k++k−=2kF and 2k�

processes, see Fig. 1. We find �using the gauge �+�−= i�

�Sx

Sy

Sz �
2kF

= −
cos��2��� + 2kFx�

�a0
� � − sin��2����

cos�F�cos��2���� + sin�F�cos��2��� + �kFx�

sin��2����
 → −

cos��2��� + 2kFx�
�a0 ��1

0

0
� .

�52�

yσ

I
III

II

yC = −yσ yC = yσyC

0

FIG. 3. RG flow of Eq. �49�.
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The last line of the above equation is somewhat symbolic,
with zeros representing exponentially decaying correlations
of the corresponding spin components, Sy,z. Here ẑ compo-
nent is disordered by strong quantum fluctuations of dual ��

field, as dictated by �� ,�� commutation relation, see Eq.
�68�. The ŷ component does not order because cos��2���

cl�
=0. Thus Cooper order found here in fact represents spin-
density-wave �SDWx� order at momentum 2kF of the x̂ com-
ponent of spin density, as discussed previously in Ref. 25.
Observe that Sx ordering is of quasi-LRO type as it involves
free charge boson, ��. As a result, spin correlations do decay
with time and distance, but very slowly �Sx�x�Sx�0�

�cos�2kFx�x−K�.

The result Eq. �52� also hints a possibility of truly long-
range-ordered spin correlations in the insulating state of the
wire Heisenberg spin chain. There the charge field �� is
pinned by the relevant two-particle Umklapp scattering,31

which can be mimicked by setting K�→0 in the spin-
correlation function above. This is the essence of the result to
be discussed in Sec. VI below.

Observe another interesting feature of Eq. �52�: S2kF

y has
the appearance of rotated by angle F component of the vec-
tor, whereas S2kF

x and S2kF

z remain unchanged. The question
that arises is what does S2kF

y rotate into? The full answer is
provided by considering 2kF component of the generalized
helicity operators

h2kF

a �x� = − �i/2kF� �
s,s�=↑,↓

�s
†�s,s�

a p̂�s�	2kF

= �i/2� �
s=↑,↓

�Rs
†�s,s�

a Ls�e
−i2kFx − Ls

†�s,s�
a Rs�e

i2kFx� ,

�53�

where a= �0,x ,y ,z�. Note that h2kF

0 �x� turns into well-known
staggered dimerization operator 
�x� in the “spin chain limit”
of the problem, when charge fluctuations disappear. In terms
of the right and left moving fermions the staggered �2kF�
dimerization is given by


 = h2kF

0 = �i/2� �
s=↑,↓

�Rs
†Lse

−i2kFx − Ls
†Rse

i2kFx� . �54�

Its bosonized form, in terms of �� and �� fields �Eq. �33��,

h2kF

0 =
cos��2��� + 2kFx�

�a0
�cos�F�cos��2��� + �kFx�

− sin�F�cos��2����� . �55�

matches “rotated” S2kF

y in Eq. �52� exactly.
Although similar looking, this operator is different from

“2kF“ component of the density, described below in Eq. �60�.
That one has charge boson �� appearing under sine, see Eqs.

�61� and �62�, while both 
 and S� fields are proportional to
the cosine of it �see also Ref. 41�. The difference is impor-
tant. The y–component of spin and h0 operators in the origi-
nal up and down-spin basis can be written in a rather com-
pact form,

S2kF

y = cos�F�S̃2kF

y + sin�F�h̃2kF

0

h2kF

0 = cos�F�h̃2kF

0 − sin�F�S̃2kF

y , �56�

where

S̃2kF

y �x� =
1

2 �
�,��=�

�R�
†��,��

y L��e
−i�k�+k���x + L�

†��,��
y R��e

−i�k�+k���x�

�57�

and

h̃2kF

0 �x� =
i

2 �
�=�

�R�
†L�e

−i2k�x − L�
†R�e

i2k�x� , �58�

are, respectively, the spin and h0 operators in the � basis.
Thus, in the limit of F→� /2, the 2kF component of spin
along the y direction in one basis appears as the h0 operator
in the second basis and vice versa.

Of the remaining staggered operators, ha �a=x ,y ,z� only
hy is affected by rotation. The y component partially “ro-
tates” into the 2kF part of the density operator, �̃2kF
=��=��R�

†L�e
−i2k�x+L�

†R�e
i2k�x�, via the following relation

h2kF

y = cos�F�h̃2kF

y − sin�F��̃2kF
/2. �59�

On the other hand the 2kF component of density operator in
the original spin basis, �2kF

=�s=↑,↓�Rs
†Lse

−i2kFx+Ls
†Rse

i2kFx�,
rotates into the y component of the h-operator

�2kF
/2 = cos�F��̃2kF

/2 + sin�F�h̃2kF

y . �60�

As before, tilde’s are used to denote operators in the � basis.

The bosonized forms for h̃2kF

y and �̃2kF
are as follows:

h̃2kF

y = −
1

�a0
sin��2��� + 2kFx�cos��2���� �61�

and

�̃2kF
= −

2

�a0
sin��2��� + 2kFx�cos��2��� + �kFx� .

�62�

Note that the charge content of hy and density operator are
the same but the spin parts are different.

The following relation may be helpful in revealing the
origins of ha and 
 fields. In the case of Heisenberg chain the
staggered dimerization has meaning of the staggered energy

density, 
�x�=ei2kFxS��x� ·S��x+a0�, where a0 is the lattice
spacing. In the low-energy limit this expression turns into


�x�� �J�R�x�+J�L�x�� ·S�2kF
�x��, where the limit x�→x must be

taken. Short calculation shows that this leads to Eq. �54�
above. We now observe that, quite similarly to 
=h0, the
helicity operator ha �with vector index a=x ,y ,z� may be un-
derstood as arising from the fusing of the spin current �Eq.
�44�� with the 2kF component of the density field: h2kF

a �x�
= �JR

a�x�+JL
a�x���2kF

�x��. Here again x�→x limit is under-
stood. One can check that all relations involving ha derived
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above follow from this observation. In particular, we note
that

h2kF

x =
2

�a0
sin��2��� + 2kFx�sin��2���� , �63�

implying that correlation function of this field decays with
the same exponent �K�� as that of S2kF

x discussed in the be-
ginning of this section. It is useful to note that helicity dis-
appears in the spin-chain limit of the problem, together with
the low-energy density fluctuations.

IV. PERTURBATIVE APPROACH

The aim of this section is to show that the limit F→0
can be obtained in a straightforward perturbation expansion
in �R. While results of this section parallel conclusions of the
previous two-subband consideration in Secs. III and III A,
the technical steps involved are somewhat involved and are,
in our opinion, of interest in its own right. In addition, simi-
lar perturbative consideration of the impurity effects later in
this work turns out to be very informative for understanding
the physics. For these reasons we choose to present the main
steps of the perturbation theory in spin-orbit coupling �R.
The calculation starts very similar to Ref. 14 but concludes
with quite different steps.

The idea is to treat both magnetic field and Rashba terms
as perturbations to the standard single-channel ballistic quan-
tum wire charge and spin sectors of which are described by
the decoupled Tomonaga-Luttinger Hamiltonians �35� and
�36�. The parameters K�/� ,u�/� of these unperturbed har-
monic sectors are given by Eq. �41� but with F=0. Spin
backscattering term �Eq. �38�� is in principle present �again
with F=0� but will not be required in the subsequent calcu-
lation.

Thus the perturbing terms are, see Eq. �3�, the Zeeman
term,

ĤZ = − 	z� dx�s
†
�ss�

z

2
�s� �64�

and the spin-orbit term given by,

ĤR = �R� dx�s
†�x��ss�

x �− i
�

�x
��s��x� , �65�

where �s=↑,↓�x� right and left movers of unperturbed single-
channel quantum wire

�s = Rse
ikFx + Lse

−ikFx. �66�

Bosonized expressions for R /L operators parallels that in
Eqs. �22�–�24� where the subband index �=� should be re-
placed by spin index s= ↑ ,↓. In terms of charge and spin
modes introduced in Eq. �33�, dual pair �s ,�s for a fermion
of a given spin projection s is expressed as

�s = ��� + s���/�2, �s = ��� + s���/�2, �67�

where the following correspondence for the right-hand side
of the equations is understood: s= ↑ = +1 and s= ↓ =−1. It
then follows that

����x�,����x��� =
i

2
�1 − sign�x − x��� , �68�

where �=s= ↑ ,↓ or � ,�.
We then find

ĤZ = − 	z� dx�JR
z + JL

z � = −
	z

�2�
� dx�x�� �69�

and

ĤR = 2�RkF� dx�JR
x �x� − JL

x�x��

=
2�RkF�↑�↓

�a0
� dx cos��2����sin��2���� , �70�

where JR
a and JL

a are the ath components of chiral �right and
left� spin currents �a=x ,y ,z� defined as

JR
a = Rs

†�x�
�ss�

a

2
Rs��x�, JL

a = Ls
†�x�

�ss�
a

2
Ls��x� . �71�

Note that ĤR, being determined by the difference of right and
left spin currents, is odd under spatial inversion P which
interchanges right and left movers.

Finally, we rescale fields ��→�� /�K� and ��→�K���

and account for the Zeeman term �Eq. �69�� by a position-
dependent shift ��→��+�K� / �2��	zx /u� so that

ĤR = g̃R� dx cos��2�K��� + q0x�sin��2�

K�

��� ,

g̃R =
2�RkF

�a0
�↑�↓, q0 =

K�	z

u�

. �72�

Up to a factor of K��1 which appears here due to the res-
caling of the bosonic fields above, q0 matches with �kF in
Eq. �9� for �R=0.

These standard transformations leave Eq. �72� as the only
perturbation, and correspond to 	z��RkF limit of the theory.
Observe that charge sector of the theory, Eqs. �35� and �41�
with F=0, decouples from the spin sector and does not gen-
erate any new term.

The calculation proceeds by expanding partition function
in powers of gR

Z =� e−S0�1 −� d ĤR +
1

2
� d d �ĤR

2 + . . .� , �73�

where the unperturbed action S0 is particularly simple

S0 =� dxd �u�

2
���x���2 + �����2� − i� ���x��� . �74�

The backscattering term cos��8�K���+2�kFx�, see Eq.
�38�, is ignored as it generates terms at higher order in per-

turbation theory �by coupling with ĤR
2�.

Further details of the calculation are summarized in Ap-
pendix B. The result is Eq. �B12� from where we can read off
the leading correction to the spin Hamiltonian
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H�
�2� = � �RkF

K�	z
�2 U�2kF�

��a0�2K�
� dx cos��8�

K�

��� . �75�

This compares well with our previous result �Eq. �37�� �re-
member that we rescaled � as �→� /�K above� in the limit
F�1, where the described calculation is applicable.

It is worth pointing out that perturbatively generated Coo-
per term, instead of being proportional to ��RkF /vF�2 as one
would naïvely expect from a straight forward perturbation
expansion of Eq. �72�, acquires a nontrivial dependence on
both the backscattering amplitude, U�2kF� / �2�vF�, �via K
−1 /K combination in Eq. �B11�� and the Zeeman term 	z
�via q0 dependence of Eq. �B11�� and is proportional to
��RkF /	z�2U�2kF� /vF. A second thing to notice is the crucial
role of Klein terms �see Eq. �B12�� in generating the correct
�positive� sign in Eq. �75�.

A. Arbitrary angle between SO and magnetic field

Perturbative approach is convenient for analyzing angular
stability of the Cooper phase. Let us consider the situation
when the angle between the magnetic-field and spin-orbit
directions is � /2−�, so that �=0 corresponds to the or-
thogonal orientation studied so far in this paper. It is conve-
nient to keep ẑ as the direction of magnetic field, in which
case the spin-orbital term changes from �Rp̂�x to
�Rp̂��x cos���+�z sin����. Following steps that led to Eqs.
�69�, �70�, and �72� we obtain that HR,�=HR

�x�+HR
�z�

HR
�x� = g̃R

�x�� dx cos��2�K��� + q0x�sin��2�

K�

��� ,

HR
�z� = −� 2

�
�RkF sin���� dx�x��, �76�

where first �second� equation represents contribution from �x

��z� matrix. The coupling constant of cosine term is only
slightly modified in comparison with Eq. �72�, g̃R

�x�

= g̃R cos2���. HR
�z� represents the main new feature of the non-

orthogonal situation. It is naturally absorbed into HR
�x� by a

simple position-dependent shift of field �� which results in

HR,� = g̃R
�x�� dx cos��2�K��� + q0x�

�sin��2�

K�

�� + �x� ;

� =
2�RkFsin���

�K�vF

. �77�

Note that both � and � fields acquire oscillations now. The
consequence of this is that the generated Cooper term �com-
pare with Eq. �75��

H�
C = ��RkF cos���

K�	z
�2 U�2kF�

��a0�2K�

�� dx cos��8�

K�

�� + 2�x� , �78�

does not conserve momentum for ��0. This important re-
sult is evident in the single-particle spectrum, which now
reads ���0�


� =
k2

2m
� ���Rk�2 + �	z/2�2 − �k	z sin � , �79�

and is to be compared with Eq. �4�, which describes �=0
situation. The spectrum �Eq. �79�� acquires an asymmetry
about the energy axis as seen in Fig. 4. The top �+� subband
shifts toward the right and the bottom �−� one toward the
left. As a result, the pair tunneling does not conserve mo-
mentum for ��0, as is seen in Eq. �78� above.

The momentum mismatch � destabilizes the Cooper order
and eventually, for some critical �c, destroys it completely.
The critical angle can be easily estimated by comparing two
spatial scales: �C, which describes perfect SDW order, and
1 /�, which represents the scale on which momentum non-
conservation becomes pronounced. Estimating �C�e�c,
where g̃R��c��1, we obtain that the Cooper order is de-
stroyed when

U�2kF���RkF cos���/	z�2 � �RkF sin��� . �80�

Observe that this happens already for small angles, we can
simplify the expression for the critical angle

�c �
U�2kF�

	z

�RkF

	z
� 1. �81�

This angular sensitivity of the found Cooper order to mutual
orientation of the magnetic and spin-orbital directions can be
used as an experimental probe to differentiate between it and
other, spin-orbit independent, many-body instabilities of in-
teracting quantum wire.

V. ISOLATED IMPURITY

SDWx state manifests itself not only in spin correlations
�Eq. �52��. It turns out that its response to a weak potential

k

E
(k

)

FIG. 4. �Color online� Occupied subbands 
� for the case of
nonorthogonal spin-orbital and magnetic-field axes. Arrows illus-
trate spin polarization, as in Fig. 1. Filled dots indicate location of
the center-of-mass for �+� �red� and �−� �blue� subbands. Dashed
lines show ��� subbands of Fig. 1, corresponding to the orthogonal
orientation, �=0, for comparison.
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scattering �impurity� is rather nontrivial. We consider here a
weak delta-function impurity V�x�=V0��x�, with strength V0,
located at the origin. The condition V0�	c means that im-
purity can be considered as a weak perturbation to the estab-
lished SDW phase. Since the latter is most robust in the limit
of F�1, this is the limit we consider in this section. �The
limit of strong impurity, V0�	c, is rather standard: impurity
destroys the SDW and the wire flows into an insulator at low
energies.34�

The interaction of electrons with an impurity potential
V�x� is given by

V̂ =� dxV�x� �
s=↑,↓

�s
†�x��s�x� . �82�

As usual, it is the backscattering ��2kF
� part of the density

that has to be considered, �2kF
=�s�Rs

†Ls+h.c.�. Working in
the two-subband basis of eigenstates �=� of the noninter-
acting Hamiltonian which includes Rashba spin-orbit term
and the Zeeman term, see Eq. �14�, we derive for the 2kF
component of the density ��x� at the origin

�2kF
= �2kF

intra + �2kF

inter, �83�

where the intrasubband part is

�2kF

intra = cos�F��L+
†R+ + L−

†R− + h.c.� , �84�

while the novel intersubband contribution is present due to
the nonorhogonality of spin states in ��� subbands discussed
in Sec. II,

�2kF

inter = sin�F��L−
†R+ − L+

†R− + h.c.� . �85�

Alternatively, one can think of these two contributions as

representing �̃ and h̃y contributions in Eq. �60�. In terms of
bosonic fields the density reads

�2kF
�x = 0� =

− 2 sin��2����
�a0

�cos�F�cos��2����

− sin�F�cos��2����� . �86�

We now observe that setting ��→��
cl= �m+ 1

2 ��� /2, as ap-
propriate for the Cooper phase �Sec. III C�, nullifies the back-
scattering component of the density �Eq. �86��. The first �in-
trasubband� term gets killed by diverging fluctuations of ��,
dual to ��. Intriguingly, the second �intersubband� contribu-
tion is also zero because cos��2���

cl�= �cos�� /2�=0.
This argument can be made more precise by following

calculations described in Refs. 29, 35, and 36. We param-
etrize ��=��

cl+�� and expand the relevant cosine term in
Hamiltonian �37� to second order in fluctuations ��. One
obtains a massive term �	c����2 in the Hamiltonian, which
causes exponential decay in correlation functions of the dual
�� field. In particular �cos�2����0, �cos�2����0, ��
 will
decay as exp�−	c	 − �	�. Thus for an incoming particle with
energy ��	c, the intersubband scattering channel is absent.

Substituting ��=��
cl+�� in the second term in Eq. �86�

converts it into F sin��2����sin��2����. Correlations of
sin��2���� are also short-ranged

�sin��2���� ��sin��2���� ���


�
	c

vFkF
� sinh�K0�	c	 −  �	�� , �87�

where K0�x��e−x /�x �for x�1� is the modified Bessel func-
tion �see Ref. 29�. The two exponentially decaying contribu-
tions add up �in second-order perturbation theory in impurity
strength V0� to produce an effective two-particle backscatter-
ing potential ��V0

2 /	c�cos��8����0, ��. This generated two-
particle impurity backscattering term, however, is relevant
only for strongly repulsive interactions, K�!1 /2. We are
thus left with irrelevant impurity potential for as long as
V0�	c is justified and for not too strong repulsion, 1 /2
�K��1: SDWx state is not sensitive to weak disorder!

The situation is similar to that in recently proposed edge
states in quantum spin Hall system.37 There, gapless spin-up
and spin-down excitations propagate in opposite directions
along the edge, which forbids single-particle backscattering.
Interacting electrons, however, can backscatter off the impu-
rity in pairs.38,39

Our conclusion �2kF
→0, Eq. �86�, rests on somewhat

technical condition cos��2���
cl�=0 and deserves a better un-

derstanding. This is provided by the perturbative calculation
in Appendix D. The idea of the calculation is similar to that
in Sec. IV: treat both impurity and spin-orbit terms as per-
turbation and generate spin-orbit-related corrections to back-
scattering potential �proportional to F in Eq. �86�� perturba-
tively. In this way we can be certain that all symmetry-
allowed contributions are accounted for. This argument also
makes it clear that the generated terms, being produced by
the SOI, have to be odd under spatial inversion P. It is this
symmetry that guaranties that sin��2���� cannot be gener-
ated in the process. This instructive calculation, carried in
Appendix D, indeed supports the conclusions of the more
formal two-subband approach described in this section.

We conclude this section by pointing out experimental
consequences of our findings. Suppression of single-particle
backscattering off weak impurity under the outlined condi-
tions implies an unusual negative magnetoresistance in one-
dimensional wire. Indeed, the conductance of the wire with
such an impurity should remain at the perfect Gwire=2e2 /h
value for as long as applied magnetic field is directed per-
pendicular to the spin-orbital ��x here� axis. By either turn-
ing the magnetic field off, or simply rotating the sample �so
that momentum mismatch between the two subbands desta-
bilizes SDWx order�, one should observe that conductance
plateau deteriorates. It will be destroyed completely in the
zero-temperature limit.

VI. HEISENBERG ANTIFERROMAGNET WITH DM
INTERACTION AND MAGNETIC FIELD

In this section we will consider a closely related problem:
the effect of uniform and staggered Dzyaloshisnkii-Moriya
interaction on a spin S=1 /2 Heisenberg antiferromagnet
�HAFM� in the presence of a magnetic field perpendicular to
the DM vector. We start by demonstrating the equivalence
between the quantum wire problem, analyzed in Secs. II–V,
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with that of Heisenberg spin chain subject to an additional
uniform DM interaction. We then present a novel chiral ro-
tation argument to show that results of the two-subband ap-
proach in Sec. III can be obtained from a straightforward
combination of two independent rotations for right and left
movers. We also discuss the difference between the uniform
and the staggered DM interaction, analyzed previously in
Ref. 27.

A. Weak uniform DM interaction and strong magnetic field

The Hamiltonian of an isotropic HAFM spin chain is
given by

Hheis = J�
j

�Sj
xSj+1

x + Sj
ySj+1

y + Sj
zSj+1

z � . �88�

In the continuum limit, the above Hamiltonian is most con-
veniently described in terms of the SU�2�1 Wess-Zumino-
Novikov-Witten model, the basic ingredients of which are

the uniform SU�2� left J�L�x� and right J�R�x� spin currents,
defined via fermions in Eq. �71�, and the staggered magneti-

zation N� �x�.30 Another important component is provided by
staggered energy density �dimerization�, see Eq. �54�, but
this does not develop any order in the presence of external
magnetic field. These operators will be used to represent the
continuum limit of the spin,

S� j → a0�J�L�x� + J�R�x� + �− 1�x/a0N� �x�� , �89�

where a0 is the lattice spacing and continuous space variable
is introduced via x= ja0. Continuum limit of Eq. �88� is
Hheis=H0+Hbs, where

H0 =
2�v

3
� dx�J�R · J�R + J�L · J�L� �90�

=
v
2
� dx���x��2 + ��x��2� . �91�

The first line constitutes non-Abelian spin current formula-
tion of the problem, which is convenient for analyzing spin-
rotation invariant �SU�2�� problems, while the second makes
connection with familiar Abelian bosonization result �Eq.
�36��: identifications ��� ,���→ �� ,��, u�→v=�Ja0 /2, and
kF→� / �2a0� finalize the connection. The marginal back-
scattering term accounts for residual interaction between spin
excitations,

Hbs = − gbs� dxJ�R · J�L. �92�

Its coupling constant gbs�0 is known from extensive nu-
merical studies of the Heisenberg chain:40 gbs=0.23�2�v.
This term is responsible for the fact that initial value of the
Luttinger parameter K�=1+gbs /2�v is greater than 1.

There are no low-energy charge fluctuations as the charge
is “locked” to the lattice by relevant Umklapp processes.
This allows one to replace cosine of charged boson �� in Eq.
�52� by its expectation value �: �= �cos��2����
. The first
line of Eq. �52� then establishes Abelian representation of the
staggered magnetization

�Nx

Ny

Nz � =
��− 1�x

�a0 �− sin��2���

cos��2���

− sin��2���
 . �93�

Magnetic field is introduced via Zeeman term

HZ
�z� = − �

j

g�BBSj
z → − 	z� dx�JR

z + JL
z � , �94�

which is identical to Eq. �69�. The small upper index �z here�
indicates the axis in spin space. Finally, the Dzyaloshinskii-
Moriya Hamiltonian describes asymmetric and odd under
spatial inversion interaction between spins

HDM
�x� = �

j

D� · S� j � S� j+1. �95�

Vector D� =Dx̂ fixes direction of spin anisotropy, which we
choose to be along spin-x̂ direction, similar to the spin-orbit
direction choice in Eq. �3�.

Using Eq. �89� we see that continuum limit of the uniform
DM Hamiltonian requires the knowledge of the following
operators

OJ�x,x�� = Jy�x�Jz�x�� − Jz�x�Jy�x�� ,

ON�x,x�� = Ny�x�Nz�x�� − Nz�x�Ny�x�� , �96�

where x�=x+a0. The first of these follows from the well-
known OPE for spin currents, see for example Eqs. �25� and
�26� of Ref. 41 and set z̄− z̄�= ia0:

OJ�x,x�� =
1

�a0
�JR

x �x� − JL
x�x�� . �97�

The second requires more work and is calculated using the
definition �93� and bosonic OPEs �B1�

ON�x,x�� =
2�2

�a0
�JR

x �x� − JL
x�x�� . �98�

As a result

HDM
�x� = D̃� dx�JR

x − JL
x�, D̃ =

Da0

�
�1 + 2�2� . �99�

Comparing Eq. �99� with Eqs. �70� and �94� with Eq. �69� we
observe that the problem at hand is identical to that analyzed
in Sec. IV. We immediately conclude that the 2kF=� �stag-
gered� components of spins acquire long-range order along

the direction of D� as soon as magnetic field is turned on
along the orthogonal direction.

�Nx
 = const�− 1�x, �Ny,z
 = 0. �100�

It is useful to compare this equation with Eq. �52�. Note that
the effect is controlled by the backscattering amplitude gbs
=2�K�−1�.

Except for the brief remark in Sec. VIII of Ref. 42, the
possibility of the long-range order in the magnetized spin
chain with asymmetric uniform DM interaction has not been
discussed in the literature, to the best of our knowledge. We
also would like to note technical similarities of our problem
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with that of an anisotropic Heisenberg chain in a transverse
field, considered in Ref. 43.

Experimentally, the field-induced long-ranged magnetic
order would be probably easiest to observe via thermody-
namic measurements. Similar to the case of copper
benzoate,26 the order should show up via an exponential sup-
pression of the specific heat. The magnitude of this suppres-
sion, which is controlled by the energy gap 	c �Eq. �51��,
should be a sensitive function of the magnetic field orienta-
tion, reaching maximum when the field is orthogonal to the
DM axis as discussed above.

B. Chiral rotation and tilted magnetic field

We now present an elegant argument, borrowed from the
technically closely related study of quantum kagomé
antiferromagnet,44 exposing the nature of the Cooper order to
the fullest. Consider the situation, discussed in Sec. IV A, of
the tilted magnetic field making an angle � /2−� with the
DM axis direction �which we keep at x̂�. The Hamiltonian
describing this arrangement is given by H=H0+Hbs+V,
where V includes Zeeman and DM fields

V =� dx�dRJR
x − dLJL

x − h1�JR
z + JL

z �� . �101�

The parameters are

dR = D̃ − h2, dL = D̃ + h2, h1 = h cos �, h2 = h sin � .

�102�

We now rotate right �left� spin currents J�R �J�L� about ŷ axis
by angle �R ��L� such that after the rotation the V term be-
comes

V = −� dx��dR
2 + h1

2MR
z + �dL

2 + h1
2ML

z � . �103�

The relation between old �J�� and new �M� � currents is simple

J�R = R��R�M� R, J�L = R��L�M� L, �104�

here R is the rotation matrix

R��� = �cos��� 0 − sin���
0 1 0

sin��� 0 cos���
 . �105�

The rotation angles are given by tan��R�=dR /h1 and
tan��L�=−dL /h1. The key reason behind these rotations is the
observation that unperturbed Hamiltonian H0, being the sum
of commuting right and left terms, is invariant under the
rotations. However, the backscattering Hbs is not, and trans-
forms into

Hbs = − gbs� dx�cos���MR
x ML

x + MR
z ML

z �

+ sin���MR
x ML

z − MR
z ML

x� + MR
y ML

y� , �106�

where =�R−�L. The reason for this transformation is of
course that right and left currents are rotated in opposite

directions �and by different amounts�. Observe that Eq. �106�
matches the interaction part of Eq. �47�.

The nice thing about the rotation is that now both SO and
Zeeman fields can be taken into account by simple linear
transformations of spin bosons. Indeed, using Abelian
bosonization we observe that

V = −� dx� vt�
�2�

�x�� +
vt�
�2�

�x��� , �107�

where

t� = ��dL
2 + h1

2 + �dR
2 + h1

2�/2v ,

t� = ��dL
2 + h1

2 − �dR
2 + h1

2�/2v . �108�

These linear terms are removed by shifts

�� → �� +
t�x
�2�

,

�� → �� +
t�x

�2�
. �109�

The price is that transverse components MR/L
x,y acquire oscil-

lating position-dependent factors

MR
+ → MR

+e−i�t�−t��x, ML
+ → ML

+ei�t�+t��x. �110�

The major consequence of this is that every term in Hbs, with
a single exception of MR

z ML
z one, picks up oscillating factor

Hbs = − gbs� dx�cos��MR
z ML

z +
cos�� − 1

4

��MR
+ML

+ei2t�x + h.c.� +
cos�� + 1

4
�MR

+ML
−e−i2t�x + h.c.�

+
sin��

2
�ML

z MR
+e−i�t�−t��x − MR

z ML
+ei�t�+t��x + h.c.�� .

�111�

This equation contains all arrangements that we have dis-
cussed in this paper. Setting t�=0 corresponds to orthogonal
��=0� orientation of spin-orbit �DM� and magnetic-field

axis. In that limit we recover Eqs. �45� �J� there corresponds

to M� here�. Allowing for ��0 leads us to Sec. IV A, results
of which represent Abelian version of the discussion here. As
shown there, the SDWx phase is stable in a finite angular
interval near �=0.

It is worth noting that Eqs. �103� and �107� imply finite
expectation values of MR/L

z currents:

�MR/L
z 
 = �dR/L

2 + h1
2/�4�v� . �112�

By virtue of Eq. �105� this implies finite expectation values
of the uniform magnetization along z and x axis, JR

z/x+JL
z/x,

and uniform spin current, JR
z/x−JL

z/x, along these two axes.
That is,

�JR
x − JL

x
 = sin��
t�
2�

, �JR
z − JL

z 
 = − cos��
t�

2�
,
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�JR
x + JL

x
 = − sin��
t�

2�
, �JR

z + JL
z 
 = cos��

t�
2�

.

�113�

Equilibrium values of spin current and magnetization along
the y direction vanish. These relations complement discus-
sion of the relations between staggered �2kF� components of
various fields in Sec. III C.

C. Strong uniform DM interaction and weak magnetic field

It is instructive to consider another “tricky” limit of the
problem: strong uniform DM interaction and a weak mag-
netic field, D�	z. The idea here is to account for the DM
term exactly on the lattice level, see Eq. �114�, and treat the
Zeeman term as a small perturbation to the obtained Hamil-
tonian �116�.

The two axis, DM and Zeeman, are still orthogonal but it

is more convenient now to let D� point along the ẑ axis in spin
space, while magnetic field is pointing along x̂. Following
Ref. 42 we perform unitary transformation of the lattice
Hamiltonian to absorb the uniform DM term exactly,

Sj
+ → S̃j

+ei�j, Sj
− → S̃j

−e−i�j and Sj
z → S̃j

z, �114�

where �=arctan�D /J��D /J for D�J. The transformed
Hamiltonian is that of the XXZ spin chain with weak aniso-
tropy

H̃ = J̃�
j
�S̃j

xS̃j+1
x + S̃j

yS̃j+1
y +

J

J̃
S̃j

zS̃j+1
z � , �115�

where J̃=�J2+D2. Magnetic field term, however, acquires
position dependence under this transformation

H̃Z
�x� = −

	z

2 �
j

�S̃j
+ei�j + S̃j

−e−i�j� . �116�

Bosonizing it according to the rules described in Secs. III A
and IV, we obtain

H̃Z
�x� =

�↑�↓	z

�a0
� dx sin��2�K��cos��2�

K
� + �x� ,

�117�

where Luttinger parameter of the XXZ chain �Eq. �115�� is
given by K−1=1−arccos�J /�J2+D2� /��1−D / ��J�. The
shift of � field by �x can be easily understood from Eq. �99�,
adapted for the DM axis along ẑ direction in spin space:

HDM
�z� = D̃�dx�JR

z −JL
z �� D̃�dx�x� which indeed can be ac-

counted for by shifting �.
Being of nonzero conformal spin, the Zeeman term �117�

generates under RG two new terms of importance to us:

H̃�� �	z
2D /J�cos��8�K��, of scaling dimension 2K=2

+2D / ��J��2, and H̃�=G��dx cos��8�
K �+2�x� with scaling

dimension 2 /K=2−2D / ��J�!2. The position-dependent
phase 2�x, nonetheless, makes it irrelevant.

Indeed, the coupling constant can be estimated, following
momentum-shell RG of Appendix C, as G�� �	z /v�2�K

−1 /K�2��	zD /J�2, see Eqs. �C7� and �C12�. Neglecting the
oscillating phase for the moment, we can easily estimate the
correlation length corresponding to the Cooper order as �c
=exp��c�, where G���c�=G��0�exp��2−2 /K��c��1, so that
�c= ��J /D�ln�J / �	zD��.

This length is to be compared with ��=1 /��J /D, which

is the length on which the cosine in H̃� changes sign. We
observe that

ln��c� =
�J

D
ln� J

	zD
�� ln���� = ln� J

D
� , �118�

which implies that fast oscillations make it impossible for the

H̃� to reach strong coupling. Hence no order can come from
this term.

The other term, H̃�, appears to be irrelevant and it is
tempting to disregard it altogether. One, however, must be
careful and recall discussion in Sec. III B. Particularly, ob-

serve that H̃� may fall in region II �with y��0�!0�. Whether
or not this happens is in principle a subject of precise calcu-
lation which however can be avoided here. Indeed analysis
of Sec. VI B, taken together with results of Sec. III B, shows
that Cooper instability develops for arbitrary  as long as
t�=0.

We thus conclude that H̃� must belong to region II in Fig.
3, even though this conclusion is not at all obvious from the
Abelian bosonization analysis sketched above. We chose to
present this subtle point in order to demonstrate the power of
non-Abelian current formulation in Sec. VI B.

Note finally that H̃� still describes Cooper order even
though it is written in terms of � field. The reason for this
illustrates another shortcoming of Abelian formulation. Uni-
tary transformation �Eq. �114�� is the lattice version of rota-
tion of right �left� currents by �R=� /2 ��L=−� /2� in Sec.
IV. �In this limit 	z=0 and magnetic field is to be added later
as a perturbation.� Such a rotation corresponds to =�
which replaces standard backscattering �MR

+ML
−+h.c.� with

�MR
+ML

++h.c.�. In terms of Abelian bosonization this corre-
sponds to interchange cos �8��↔cos �8��. Moreover, this
same notation changes the sign of MR

z ML
z term, which corre-

sponds to interchange K↔1 /K, which completes the duality
mapping. Observe again the ease with which current formu-
lation of Sec. VI B leads to conclusion.

In simpler terms, accounting for DM �or, equivalently,
spin-orbit� term only amounts to working in the basis of
eigenstates of operator �x. These eigenstates are described
simply by two horizontally shifted parabolas in Fig. 5. De-
noting the right �left� subbands by indices 1 �	1
= 	→ 
� and 2
�	2
= 	← 
�, we immediately observe that Cooper scattering

FIG. 5. �Color online� Band structure in the absence of magnetic
field. Note the absence of the gap between the subbands at k=0.
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discussed previously corresponds to the process such as
R1

†L1L2
†R2. �So that initial pair L1R2 scatters to final R1L2

state. Note that the other possibility, L1→L2 and R2→R1 is
forbidden by orthogonality of single-particle basis states,
�1 	2
= �→ 	 ← 
=0.� Bosonizing this in a standard way we
find that �recall R1

†L1�exp�−i�4���1R+�1L��� R1
†L1L2

†R2
�exp�−i�4���1−�2��=exp�−i�8����. Thus indeed the
Cooper process is written in terms of �� field in the new
basis.

Observe that this conclusion is special to the limit of no
magnetic field, 	z=0. As soon as the field is on, 	z�0, the
band structure changes and horizontally shifted subbands
�1,2� turn into vertically shifted pair �−,+� used in this paper
�Fig. 1�: arbitrary small B leads to the gap 	z at the point
k=0, see Eq. �4�. We thus conclude once again that 	z=0 is
a rather singular limit, not much suited for the consideration
of general situation with both spin-orbit and Zeeman fields
present.

D. HAFM chain with staggered DM interaction and magnetic
field

For the sake of completeness and uniformity of the pre-
sentation, we revisit here the well-studied case of interplay
between staggered DM interaction and Zeeman magnetic
field, described in Refs. 27 and 45.

Staggered DM interaction along x̂ axis is described by

HsDM
�x� = D�

j

�− 1� j�Sj
ySj+1

z − Sj
zSj+1

y � . �119�

Its continuum limit requires the knowledge of

OJN�x,x�� = Ny�x�Jz�x�� + Jz�x�Ny�x�� − Jy�x�Nz�x��

− Nz�x�Jy�x�� , �120�

where, as before in Eq. �96�, we set x�=x+a0. It is an easy
calculation, using Eq. �26� of Ref. 41, to find that in the
absence of magnetic field, OJN=0 identically. The situation
changes when magnetic field �along ẑ axis� is present. Using
bosonization, magnetic field is accounted for �see Eq. �72�
and line above it� by the shift �2�K�→�2�K�+q0x. More-
over, the main effect of the field here is contained in q0
=	z /v and we can keep K=1 in all calculations below. Ob-
serving that a shift in � implies equal shifts in �R/L fields �so
that � does not change� and working backward through Eqs.
�52�, �71�, and �22� we conclude, following Ref. 27, that in
the presence of the magnetic field, spin excitations along the
field �ẑ axis here� and transverse to it �x̂ , ŷ axis� have minima
at different momenta. Namely, while Jz is still centered at
q=0, transverse components of spin current Jx,y acquire
minima at q= �q0= �2�m, where m is the magnetization.
In addition, Nz shifts from � to q=��2�m while staggered
transverse components Nx,y remain at 2kF=� point. As a
result, the product NyJz �first line in �120�� retains its zero-
field structure and continues to remain at zero. At the same
time the other combination, JyNz �second line in �120��, splits
into slow �eiq0�x−x��� and fast �eiq0�x+x��� oscillating pieces
which do not cancel each other anymore. The remaining cal-
culation is most conveniently performed using fermionic rep-

resentations of spin currents �Eq. �71�� and longitudinal mag-
netization Nz= 1

2 �R↑
†L↑−L↓

†R↓�e−iq0x+h.c.. Fusing right �left�
movers of like spin using Eq. �D4� we obtain, for example,

�JR
+�x� + JL

+�x��Nz�x�� = −
sin�q0�x − x���

2��x − x��
�R↑

†L↓ + L↑
†R↓� .

�121�

Bosonizing this expression �note that it is not sensitive to the
sign of the coordinate difference �x−x��� we finally obtain

OJN�x,x�� = −
q0�

2�2a0
cos��2���x�� . �122�

The same result can be obtained, after somewhat longer cal-
culation, using bosonized forms of spin currents and magne-
tization from the very beginning. The continuum limit of
staggered DM term then follows

HsDM
�x� =

Dq0�

�2a0
� dx cos��2���x�� . �123�

This is a highly relevant operator �scaling dimension 1/2�,
the coupling constant Gs−dm of which grows as Gs−dm���
=Gs−dm�0�exp�3� /2�. This, and the dependence of its initial
value on the combination D	z �which enters via dependence
on q0�, leads to the energy gap in the system that scales as
�D	z�2/3, exactly as Ref. 27 found originally. Note finally
that Eqs. �123� and �52� imply that the spins order �in a
staggered way� along ŷ axis, orthogonal to both DM and
magnetic-field directions.

Note that although we have treated staggered DM term
�Eq. �119�� as a perturbation to the spin chain subject to
magnetic field �which comes in via the momentum q0 here�,
we obtained the same strongly relevant result �Eq. �123�� as
the authors of Ref. 27 did. However, Ref. 27 arrived at it
from a different limit: the authors used staggered version of
Eq. �114� to account for DM piece �Eq. �119�� exactly and
then added magnetic field as a perturbation. The outcome
�Eq. �123�� is obtained in both cases simply because it is
more relevant �dimension 1/2� than the magnetic field �Zee-
man� term �dimension 1�: no matter how small Gs−dm ini-
tially is, it controls the physics. The Ny-order is present for
any ratio of Gs−dm /	z ratio.

VII. IMPLICATIONS FOR ESR EXPERIMENTS

In recent years, electron-spin-resonance �ESR� technique
has become a leading experimental candidate for probing
anisotropic terms in the spin chain. Recent theoretical impe-
tus to this field has been provided in an important work by
Oshikawa and Affleck46,47 who discussed limitations of ear-
lier theoretical work48–50 and improved and extended upon
them by using powerful modern theoretical techniques. The
emphasis in Ref. 47 has been to study the role of anisotropic
terms, in particular the staggered DM interaction, see Sec.
VI D, and exchange anisotropy terms, in modifying the reso-
nance position and the line width. However, ESR in a spin
chain with uniform DM interaction was not considered. We
will follow a closely related work by De Martino et al.,51,52
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who considered ESR for carbon nanotubes with spin-orbit
coupling, to investigate the modifications brought upon by
the uniform DM term on the ESR spectra.

We consider Faraday configuration in which the static
magnetic field and oscillating field are orthogonal to each
other. The oscillating driving field �of frequency �� is in the
microwave frequency regime and for all practical purposes
the spatial modulation of the field can be ignored. The ESR
intensity is given by the transverse �to the static magnetic
field� spin structure factor at q=0 and frequency �,

I��� =� dtdxei�t �
r,r�=R/L

�Jr
+�x,t�Jr�

− �0,0�
 . �124�

As before, the Hamiltonian, H=H0+Hbs+V, consists of
the free part �Eq. �90��, the back scattering part �Eq. �92��,
and the DM and Zeeman terms contained in the V term �Eq.
�101��. The angle between DM and magnetic-field directions
is � /2−�, see Sec. VI B.

Our aim here is to present the basic picture of ESR re-
sponse for the case of the spin chain with uniform DM inter-
action �equivalently, quantum wire with spin-orbit interac-
tion�. For this zeroth order description we omit the
backscattering interaction �Eq. �92�� between the spin cur-

rents altogether. Under this drastic approximation right J�R

and left J�L spin currents are decoupled. This implies the in-
tensity �Eq. �124�� is the sum of right and left contributions,
I���= IR���+ IL���.

To account for the simultaneous presence of DM and Zee-
man terms, we now rotate the right and left currents about
the y axis as described in Sec. VI B, see in particular Eqs.
�104� and �105�. As the backscattering �Eq. �106�� is ne-
glected, the full Hamiltonian is given by

H =� dx� �
a=x,y,z

2�v
3

�MR
a MR

a + ML
aML

a� − �RMR
z − �LML

z� ,

�125�

where �R/L=�dR/L
2 +h1

2=v�t�� t��.
We now focus on the contribution of the right spin cur-

rents,

IR��� =� dtdxei�t�JR
+�x,t�JR

−�0,0�
 , �126�

which, in terms of the rotated currents, reads

IR��� =� dtdxei�t�cos2 �R�MR
x �x,t�MR

x �0�


+ �MR
y �x,t�MR

y �0�
 + sin2 �R�MR
z �x,t�MR

z �0�
� .

�127�

The cross terms of the kind �MR
x �x , t�MR

z �0�
=0 due to the
absence of coupling between x and z components in Hamil-
tonian �125�. Further, switching to MR

� combinations of the
currents, the intensity becomes

IR��� =� dtdxei�t�sin2 �R�MR
z �x,t�MR

z �0�


+
�cos2 �R − 1�

4
�MR

+�x,t�MR
+�0� + h.c.


+
�cos2 �R + 1�

4
�MR

+�x,t�MR
−�0� + h.c.
� .

�128�

The second line in this expression contributes zero as it re-
quires anomalous averages of the kind ��R,↑�x , t��R,↑�0,0�

which are absent in Eq. �125�. We now absorb “right” mag-
netic field �R via the shift of right boson so that MR

+

→MR
+e−i�Rx/v �compare with Eq. �110��. It is worth noting

that by rotating the spin currents we have mapped the prob-
lem of the spin chain with uniform DM and magnetic fields
to that of the chain in field �R ��L� for its right �left� moving
components. This allows to borrow results of Ref. 47 and
conclude that the first line in Eq. �126� does not contribute to
IR while the last line gives

IR��� =
�cos2 �R + 1�

2
���� − 	�R	� . �129�

Clearly the contribution of the left-moving sector is obtained
by replacing R→L in the expression above. Thus the ESR
signal consists of two sharp lines, as previously discussed for
the case of carbon nanotube in Refs. 51 and 52,

I��� = �cos2 �R + 1��R��� − 	�R	�

+ �cos2 �L + 1��L��� − 	�L	� . �130�

The distance between the lines is �L−�R=2vt�. The relative
strength of the two lines is

IR��R�
IL��L�

=�dL
2 + h1

2

dR
2 + h1

2 . �131�

The ratio is always 1 for �=0 �orthogonal orientation of DM
and magnetic-field axes�, see Eq. �102�. Note that this is
exactly the configuration in which SDW order develops, as
described in detail in Sec. III B. The ordering is driven by the
Cooper term, H�

C in Eq. �45� �equivalently, the term propor-
tional to �cos��−1� in �111��, which comes from the back-
scattering process as is made clear by the discussion in Sec.
VI B. The result �Eq. �130��, obtained by neglecting back-
scattering, is clearly not applicable at low temperature where
the SDW �Cooper� instability develops. Well below the or-
dering temperature the system is described by the sine-
Gordon model excitations of which are massive kinks.53

However, even above the ordering temperature in the disor-
dered phase �which, for ��0 extends all way down to zero
temperature, see Sec. IV A� we expect the backscattering to
affect the ESR signal. Whether or not it would lead to the
finite linewidth of the two lines in Eq. �130� we do not un-
derstand yet and leave this interesting question �see Ref. 47
for detailed discussion of some technical subtleties� for fu-
ture studies.
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VIII. CONCLUSIONS

Spin-orbital interactions result in reduction of spin-
rotational symmetry from SU�2� to U�1� in one-dimensional
quantum wires and spin chains. This reduction, however, is
not sufficient to change the critical �Luttinger liquid� nature
of the one-dimensional interacting fermions. The situation
changes dramatically once external magnetic field is applied,
as we have shown in this paper. Most interesting situation
occurs when the applied field is oriented along the axis or-
thogonal to the spin-orbital �or, Dzyaloshinskii-Moriya, in
case of spin chain� axis of the wire. The resulting combina-
tion of two noncommuting perturbations, taken together with
electron-electron interactions, leads to a novel spin-density-
wave order in the direction of the spin-orbital axis.

The physics of this order is elegantly described in terms
of spin-non-conserving �Cooper� pair-tunneling processes
between Zeeman-split electron subbands. The tunneling ma-
trix element is finite only due to the presence of the spin-
orbit interaction, which allows for spin-up to spin-down �and
vice versa� conversion.

The resulting SDW state affects both spin and charge
properties of the wire. In particular, it suppresses effect of
�weak� potential impurity, resulting in the interesting phe-
nomena of negative magnetoresistance in one-dimensional
setting, as described in Sec. V.

SDW ordering acquires true long-range nature in the case
of spin chain, where charge fluctuations are absent. The stag-
gered moment points along the DM axis and is orthogonal to
the applied magnetic field.

Even when the magnetic-field and spin-orbital directions
are not orthogonal, an arrangement when the critical Lut-
tinger state survives down to the lowest temperature �see
Sec. IV A�, the problem remains interesting. In this geometry
an ESR experiment should reveal two separate lines, which
represent separate responses of right- and left-moving spin
fluctuations in the system.

It is worth pointing out that unusual consequences of the
interplay of spin-orbit and electron interactions are not re-
stricted to one-dimensional systems only. We have recently
shown54 that Coulomb-coupled two-dimensional quantum
dots acquire a novel van der Waals-like anisotropic interac-
tion between spins of the localized electrons. The strength of
this Ising interaction is determined by the fourth power of
the Rashba coupling �R.

We hope that our work will stimulate experimental search
and studies of strongly interacting quasi-one-dimensional
systems with sizable spin-orbital interaction, in particular re-
garding their response to the �both magnitude and direction�
applied magnetic field and/or magnetization. ESR studies of
spin chain materials with uniform DM interaction are very
desirable as well.
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APPENDIX A: DERIVATION OF INTRA-SUBBAND
HAMILTONIAN (29)

Noninteracting �kinetic energy� part of the �th subband
��=�� Hamiltonian reads

Hintra
0 =

vF

2
� dx���x���2 + ��x���2� . �A1�

The intrasubband interaction term is given by the part of Eq.
�12� which involves only densities from the �th subband

Hintra� =
1

2
� dxdx�U�x − x�����x����x�� , �A2�

where the density in the �th subband is expressed with the
help of Eq. �14� as

�� = R�
†R� + L�

†L� + cos����e−i2k�xR�
†L� + ei2k�xL�

†R�� .

�A3�

Its bosonized form follows

�� =
1

��
�x�� −

cos���
�a0

sin��4��� + 2k�x� , �A4�

where the first �second� term represents uniform �2k�� parts
of density. The interaction term �A2� then naturally splits
into a sum of two contributions

Hintra� = H0� + H2k�
� ,

H0� =
U�0�
2�

� dX��X���2, �A5�

H2k�
� =

cos2���
2��a0�2� dxdXU�x�sin��4����X + x/2�

+ 2k��X + x/2��sin��4����X − x/2� + 2k��X − x/2�� ,

�A6�

where x→x−x� and X= �x+x�� /2 are the relative and center-
of-mass coordinates, respectively.

Next, following Ref. 55, we fuse the two sines in Eq. �A6�
�the result is denoted as S below� using Eq. �26� and OPE
identities �B1� and �B2� to obtain

S�x,X� =
a0

2

4x2 �
�=�

ei�2k�x

�exp�i��4����X + x/2� − ��X − x/2��� .

�A7�

Performing gradient expansion in x, neglecting boundary
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contribution �equivalently, using periodic boundary condi-
tions so that �dX�X��X�=0�, and summing over �= �1
leads to

H2k�
� = −

cos2���
2�

� dxU�x�cos�2k�x� �� dX��X���2.

�A8�

The integral over relative distance gives backscattering com-
ponent of the potential U�2k��. Adding two contributions we
find

Hintra� =
U�0� − cos2���U�2k��

2�
� dx��x���2. �A9�

The sum of Eqs. �A1� and �A9� gives us the result �29�.

APPENDIX B: PERTURBATIVE APPROACH TO
GENERATE THE COOPER TERM

Expansion �73� relies on the following operator product
expansion

:ei��R�z̄�::ei��R�z̄��
ª :ei���R�z̄�+��R�z̄���: � e−����R�z̄��R�z̄��
,

:ei��L�z�::ei��L�z��: = :ei���L�z�+��L�z���: � e−����L�z��L�z��
,

�B1�

where z=u� + ix and z̄=u� − ix and correlation functions of
chiral bosons are defined by

��L�z��L�z��
 = −
1

4�
ln� z − z�

a0
� ,

��R�z̄��R�z̄��
 = −
1

4�
ln� z̄ − z̄�

a0
� . �B2�

Both Eqs. �B1� and �B2� follow from the harmonic S0, see
Eq. �74�. We also employ Baker-Hausdorff formulae

eAeB = eBeAe�A,B�, eAeB = eA+Be1/2�A,B� �B3�

to convert expressions in terms of dual bosons �� ,�� into
those in terms of chiral bosons �R ,�L,

�� = �L + �R, �� = �L − �R. �B4�

�Note that for brevity we suppress spin index � on the right-
hand-side of the above equation.� Their commutation rela-
tions are given by Eqs. �23� and �24� with �=��=�.

Series �Eq. �73�� are conveniently formulated, using Eq.
�B3� and K�→K, in terms of

A���z, z̄� ¬ ei�2�K���ei�2�/K���:ei�q0x

= ei�/4�1/K�−K��−i�/2��

� :ei�2����K+�/�K��L�z�ei�2����K−�/�K��R�z̄�:ei�q0x.

�B5�

Indeed,

ĤR =
g̃R

4i
� dx �

�,�=�
�A�,�. �B6�

In the second-order �gR
2� term, we need to combine

A���z , z̄� and A�����z� , z̄��. Using Eqs. �B1� and �B2�, we fuse
field �R/L at different points z ,z�=u� �+ ix� by setting z�
→z everywhere where this procedure does not cause diver-
gence. This is just an OPE-based gradient expansion. In this
way we obtain

A���z�A�����z�� = exp�i
�

2
� 1

K
− K� − i

�

2
��� + ������exp�i

�

2
����K −

���

K
+ ��� − �����eiq0��x+��x��

� :exp�i�2�K�� + ����L�z� + i�2�

K
�� + ����L�z��: � :exp�i�2�K

��� + ����R�z̄� − i�2�

K
�� + ����R�z̄��: � exp�−

1

2
ln� a0

z − z�
�����K +

���

K
+ ��� + �����

�exp�−
1

2
ln� a0

z̄ − z̄�
�����K +

���

K
− ��� − ����� . �B7�

In the subsequent summation over �, ��, �, ��=� indices
two combinations, with �=��, �=�� and �=−��, �=−��,
produce highly irrelevant terms �of scaling dimension �4�
and are disregarded easily. The choice �=�� and �=−��
produces backscattering correction

A���z�A�,−��z�� = exp�i��K + 1/K − ����

� � z − z�

a0
�K−1/K

ei���8�K��+2q0x�.

�B8�
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Finally, the choice �=−�� and �=��, yields the relevant
Cooper term,

A��A−�� = exp�i���� − K − 1/K��

� � a0

z − z�
�K−1/K

ei�q0�x−x��ei��8�/K��. �B9�

We then notice that for K�K��1 �see Eq. �41� with F
→0�, the backscattering piece �Eq. �B8�� is not singular as
z�→z limit is taken and simply disappears in this limit.
Moreover, it is irrelevant �scaling dimension 2 /K��2� and
contains an oscillating phase factor 2q0x which “averages” it
to zero. The other, Cooper contribution �Eq. �B9�� instead
diverges in this limit and thus has to be retained.

Collecting everything together, we find for the second-
order correction Z�2� to the unperturbed Z�0�=�e−S0

Z�2� =
1

8

g̃R
2

u�

f�"�� dXdT cos��8�/K���X,T�� , �B10�

where �X ,T�= ��x+x�� /2, � + �� /2� are the center-of-mass
coordinates. Function f�"�, with "��K−1 /K� /2, is given by
the integral over the relative coordinates �x , t�→ �x−x� , 
− �� �it comes from OPE result Eq. �B9��

f�"� = �
−�

�

dxdt
cos�q0x�
�x2 + t2�"

= − 2�� cos��"�q0
2"−2#�2 − 2"�#�" − 1/2�/#�"� ,

f�" → 0� =
4�"

q0
2 . �B11�

Because of its convergence, the integral can be extended to
infinite limits, and this was done here. Re-exponentiating this
contribution, we end up with the second-order correction
�S�2� to the free action S0

�S�2� = − ��↑�↓�↑�↓�� �RkF

K�	z
�2 U�2kF�

��a0�2K�

�� dXdT cos��8�

K�

��� . �B12�

Note that U�2kF� /vF comes from small-" limit of Eq. �B11�
while the ratio of spin orbit to Zeeman energies appears from
gR

2 /q0
2 combination. Finally, observe that Klein factors com-

bine to produce overall positive sign, as ��↑�↓�2=�↑�↓�↑�↓
=−�↑

2�↓
2=−1, in perfect agreement with our two-subband re-

sult in Eq. �37�.

APPENDIX C: MOMENTUM SHELL RG

This appendix is intended to provide self-consistent de-
scription of the standard momentum-shell RG to the problem
and to highlight few seemingly tricky technical points that
arise.

Similar to the Appendix B, our starting point here are Eqs.
�72�–�74�. Fields �� ,�� are split into slow �index s� and fast
�index f� components

��k� = �
r=s,f

�r�k�, ��k� = �
r=s,f

�r�k� , �C1�

where k= �q ,�� is a two momentum. Fast components have
finite support only in the narrow �two-� momentum shell of
“width” d$, and are integrated over during the RG step.
Precise shape of the momentum shell to be integrated out
will be discussed near the end, most of the calculation relies
on the fact that the area of that shell is small, �d$. Being
quadratic, the free action splits into slow S0,s and fast S0,f
parts as well and, integrating out fast modes in every order of
the perturbation expansion, one converts Eq. �73� into a cu-
mulant expansion for the effective action

Seff = S0,s − �S�
 f −
1

2
��S�2
 f − �S�
 f

2� + . . . , �C2�

where the perturbation is S�=�d ĤR and �O
 f stands for the
expectation value of O evaluated with fast action S0,f. The
first-order term just produces rescaling of the coupling con-
stant

g̃R → g̃R� = g̃R � exp�−
1

2
�K + 1/K��� dk

k
� , �C3�

where �� denotes integration over the fast component sup-
port area. The factor in front of the integral is just the scaling

dimension of the spin-orbit operator ĤR, 1
2 �K+1 /K��1.

Rescaling space-time back produces additional factor of 2 in
the exponent in Eq. �C3�: 1

2 �K+1 /K�→2− 1
2 �K+1 /K�. This,

using ��
dk
k =d$ /$=d�, leads finally to the standard first-

order RG equation for the running coupling constant,
dg̃R /d�= �2− 1

2 �K+1 /K��g̃R. Note that Klein factors �↑,↓ do
not affect the scaling in any way. The second-order contribu-
tion contains Cooper and backscattering terms,

�S�2� =
�g̃R��2

8
�

1
�

2
�B�r12� − 1�cos��2�K��s,1 − �s,2�

+ q0�x1 − x2��cos��2�

K
��s,1 + �s,2�� − �B−1�r12� − 1�

� cos��2�K��s,1 + �s,2� + q0�x1 + x2��

� cos��2�

K
��s,1 − �s,2�� , �C4�

where 1�20� are short-hand notations for r�1,2= �x1,2 , 1,2�,
r�12=r�1−r�2, and, for example, �s,1��s�x1 , 1�. Here

B�r12� = exp��K − 1/K��� d2k�

2�

cos�k� · r�12�
k2 � �C5�

appears from integrating out fast components of bosonic
fields. Performing gradient expansion of Eq. �C4� we find
two contributions

�SC
�2� =

�g̃R��2

8
BC� d2R� cos��8�

K
�s�R�� �C6�
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�Sbs
�2� =

− �g̃R��2

8
Bbs� d2R� cos��8�K�s�R� + 2q0X� ,

�C7�

where the center-of-mass coordinates are as usual R� = �X ,T�
= �r�1+r�2� /2. Their amplitudes are given by

BC =� d2r��B�r� − 1�cos�q0x� , �C8�

Bbs =� d2r��B−1�r� − 1� , �C9�

and differ by the absence of cosine factor in the second,
backscattering-related amplitude Eq. �C9�. The final step is
to expand B�r� as according to its definition �C5� the expres-
sion in the exponential is proportional to small d$.56 One
then finds that Eq. �C8� is proportional to the product of the
integral over the relative coordinate, �d2r� and the integral
over fast mode support, ��d2k�, coming from Eq. �C5�. The
coordinate integral is performed first to obtain

BC = ��K − 1/K���
d�dq

�������q − q0� + ��q + q0��
�2 + q2 .

�C10�

We finally argue that magnetic field, which determines q0
�Eq. �72��, breaks the symmetry between space x and time  
and this allows us to choose an asymmetric prescription for
��. Namely, we integrate over all frequencies while the q
integration is restricted to the �	$−$�	 interval. This gives

BC = �2��K − 1/K�/q0
2 if q0 � �$ − d$,$�

0 otherwise.
� �C11�

Note that the result does not contain d�=d$ /$ which serves
to emphasize its meaning as a fluctuation-degenerated initial
value of the Cooper term. Let us now see what this approach
predicts for the backscattering term �Eq. �C9��. Expanding
B�r� as in Eq. �C10� we get

Bbs = − 2��K − 1/K���
d�dq

������q�
�2 + q2

+
1

2
�K − 1/K�2��

d�dq
1

��2 + q2�2 + . . . �C12�

While the first term is clearly zero, the second, which origi-
nates from the second-order expansion of Eq. �C5�, is clearly
finite for any shape of the fast modes support. This, qua-
dratic in U�2kF� /vF�1 result, is in agreement with a nons-
ingular structure of the similar correction found during the
real-space calculation in Eq. �B8�. Note finally that in the
absence of magnetic field �q0=0� this scheme predicts simi-
lar in structure �but different in signs� corrections to the Coo-
per �Eq. �C6�� and backscattering �Eq. �C7�� terms, in agree-
ment with the result of real-space OPE calculations, see
Chap. 20 in Ref. 30 and papers.57,58

Now we return to the original problem with finite q0�0.
Combining Eq. �C11� with Eq. �C6� we have

�SC
�2� = − � �RkF

	zK�

�2 U�2kF�
4��a0�2� d2R� cos��8�

K
�s�R�� ,

�C13�

which agrees with Eqs. �B12� and �37� in everything but
sign! That sign comes from the Klein factors in g̃R �note that
at this stage the difference between g̃R and g̃R� is of higher
order in d� and not important� and is a consequence of the
identity ��↑�↓�2=−1. This puzzling discrepancy between
Eqs. �37� and �B12�, and Eq. �C13� is worth figuring out in
detail.

We note that within the functional-integral approach,
which is the framework for the momentum shell RG de-
scribed here, all information on commutation relations of
dual fields � and � is contained in �−i� ��x�� term in the
bare action Eq. �74�. This is nothing but field-theoretic ver-
sion of the canonical pẋ term in quantum mechanics.59 It
identifies � as a “coordinate” and �x� as a “momentum:”
���x� ,�x���x���= i��x−x��. While fully consistent with our
basic commutation relation �68�, this canonical bracket does
not contain information on the nontrivial commutation rela-
tion �23� of chiral right and left bosons. Indeed, it is a simple
exercise to see that replacing Eq. �23� with commuting chiral

bosons ��̃R , �̃L�=0 changes our �68� into ��̃�x� , �̃�x���
= i sign�x�−x� /2 which still satisfies “coordinate-

momentum” identification for the pair �̃ and �x�̃. To put
things differently, an analog of bosonic action �Eq. �74�� ex-

pressed in terms of “tilded” fields �̃ and �̃ is identical to the
current one in terms of our � and � fields satisfying Eqs.
�23�, �24�, and �68�. This simply means: bosonic action S0,
Eq. �74�, does not enforce anticommutation relations be-
tween right R and left L moving fermions Eq. �22�. This
shortcoming of bosonic functional integral is well known,
see for example Appendix C in Ref. 31, and several “fixes”
were proposed in the literature. Our approach consists in
enlarging the role of Klein factors: instead of Eq. �22� we
bosonize fermions here as

Rs =
"Rs

�2�a0

ei�4��̃Rs, Ls =
"Ls

�2�a0

e−i�4��̃Ls. �C14�

The Klein factors "R/L,s now carry double index: chirality �R
or L� and spin �s�. Even though the chiral bosons �̃Rs and �̃Ls
now commute, the anticommutation of Rs and Ls is enforced
by the Klein factors: �"�,s ,"��,s��=2��,���s,s�, with �=R /L.

As a result of the proposed modification the spin-orbit
term �Eq. �72�� has to be modified. It is convenient, follow-
ing Ref. 60, to introduce

#̂ = "R↑"R↓"L↑"L↓. �C15�

This product satisfies #̂2=1, from where it follows that its

eigenvalues are #= �1. One also checks that �#̂ ,"R↑"R↓�
=0 and "R↑"R↓#̂=−"L↑"L↓. These properties allow us to rep-

resent ĤR as
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ĤR = GR� dx� �1 + #̂�
2

cos��2�K�̃ + q0x�sin��2�

K
�̃�

−
�1 − #̂�

2
sin��2�K�̃ + q0x�cos��2�

K
�̃�� , �C16�

GR =
2�RkF

�a0
�i"R↑"R↓� . �C17�

Finally one observes that #̂ commutes with the Hamiltonian
of the problem, which implies that its eigenvalues represent
integrals of motion. That is, the choice #= +1 or #=−1 is the

gauge choice, and one can replace operator #̂ in Eq. �C16�
by its eigenvalue #. Comparing Eq. �C16� with our original
Eq. �72� we observe that the latter corresponds to #= +1
gauge: with #= +1, Eq. �C16� transforms into Eq. �72� by

replacing ��̃ , �̃�→ ��� ,���. Repeating steps that led us to Eq.
�C13� we arrive at

�S̃C
�2� =

�

4
�GR

q0
�2

�K − 1/K�� d2R� cos��8�

K
�̃� .

�C18�

The only, but key, difference with Eq. �C13� is that now
�i"R↑"R↓�2=−�"R↑"R↓�2="R↑

2 "R↓
2 = +1, which implies that the

amplitude of the Cooper term is positive in Eq. �C18�, in
final agreement with our previous and independently derived
results in Eqs. �37� and �B12�. This amusing exercise illus-
trates the importance of Klein factors, and, more generally,
of preserving correct �anti�commutation relations when
implementing convenient but tricky bosonization formalism.
We conclude by noting that results of the other gauge choice,
#=−1 in Eq. �C16�, while equivalent in principle to the one
made above, are most conveniently understood as following
from the global shift of bosonic fields: �̃→�+�� / �8K� and

�̃→�+��K /8. This shift must be made in all bosonized
expressions: it changes overall sign in Eq. �C18� but this is
“compensated” by the effect of the global shift described
here. As a result, the physical meaning of the Cooper insta-
bility as that of the SDWx instability remains intact.

APPENDIX D: PERTURBATIVE APPROACH TO
GENERATE THE IMPURITY TERM

The purpose of this section is to show that intersubband
contribution to impurity potential, second term in Eq. �86�,
can be obtained as a result of interference between local
impurity backscattering �first term in Eq. �86�� and bulk spin-
orbit Eq. �70�. Being interested in the interference between
two single-particle terms, we perform the calculation directly
in fermion fields and specialize to the limit 	z�Es−o
�F→0� for simplicity.

The lowest order in the perturbative expansion involving
these two terms is obtained by the following correction to
partition function �compare with Eq. �73��

�Zimp =
1

2
� e−S0� d d �ĤR� �VB� �� →� e−S0� d �VB,

�D1�

where the second line identifies correction to the impurity
backscattering term we are after. Here S0 is the action of two
Zeeman-split �↑ ,↓� subbands, and VB is the intrasubband
term due to the impurity, located at x=0, given by

VB = V0 �
s=↑,↓

�Rs
†Ls + Ls

†Rs�x=0. �D2�

The spin-orbit term ĤR in the presence of magnetic field �so
that k↑−k↓=�kF� reads

ĤR = �RkF� dx �
s=↑,↓

�Rs
†R−se

−is�kFx − Ls
†L−se

is�kFx� ,

�D3�

where we neglected terms ��kF /kF=	z /EF�1.
We calculate Eq. �D1� by fusing fermions with such as

spin index, that is by making the replacement
�R/Ls�x , ��†�x� , ��→GR/L�x−x� , − �� where possible.
Here GR/L stands for fermions Green’s functions. To lowest
�zeros� order in the interaction these are given by the free
fermion Green’s functions41

GR�x, � = ��Rs�x, ��Rs�
† �0�
 =

�s,s�

2��v − ix�

GL�x, � = ��Ls�x, ��Ls�
† �0�
 =

�s,s�

2��v + ix�
. �D4�

In this way we find

� d �VB =
�RkFV0

4�
� d ��R↑

†L↓ − L↑
†R↓�P1

+ �R↓
†L↑ − L↓

†R↑�P2� , �D5�

where

P1 =� dxdt� e−i�kFx

z̄
+

ei�kFx

z
� �D6�

P2 =� dxdt� ei�kFx

z̄
+

e−i�kFx

z
� , �D7�

and z=vFt+ ix, z̄=vFt− ix as usual. These integrals are easily
calculated

P1 = − P2 =
4�

�kFvF
2 . �D8�

Expressing �kF=	z /vF we obtain the correction
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�VB =
�RkFV0

	z
�R↑

†L↓ − R↓
†L↑ + L↓

†R↑ − L↑
†R↓� . �D9�

We observe that �VB is odd under spatial inversion P �with
respect to impurity location� when x→−x and right and left
movers get interchanged, Rs↔Ls. Of course, it must be odd
under P as it is obtained from fusing even Eq. �D2� and odd
Eq. �D3�in P terms. The oddness of Eq. �D9� is the reason
for the relative minus signs in this equation.

Bosonization of Eq. �D9�, following Sec. III A, results in

�VB =
2�RkFV0

	z

i�↑�↓
�a0

sin��2����cos��2���� , �D10�

which confirms our previous result �Eqs. �85� and �86��. The
generated impurity potential describes intrasubband impurity
backscattering.

The absence of the potentially dangerous term with
sin��2���� in place of cos��2���� in Eq. �D10� is now
clear: such a term would require no minus signs in Eq. �D9�
which is forbidden by the oddness of �VB under inversion P.
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